Material Big Data

Lanzados ppts informativos de tecnologías BigData: Hadoop, Hbase, Hive, Zookeeper...

Apuntate al Curso gratuito para aprender Business Intelligence. Plazas limitadas!!

Diseño multidimensional, OLAP, ETL, visualización, open source...

Pentaho Analytics. Un gran salto

Ya se ha lanzado Pentaho 7 y con grandes sorpresas. Descubre con nosotros las mejoras de la mejor suite Open BI

La mejor oferta de Cusos Open Source

Después de la gran acogida de nuestros Cursos Open Source, eminentemente prácticos, lanzamos las convocatorias de 2017

18 oct. 2017

Human Resources Analytics

Human Resources LinceBI Analytics solution is based on open source including KPIs, Reports, OLAP Analysis, Dashboards, Scorecards, Big Data and Machine Learning with 'predefined templates, dashboards and KPIs/ratios and fully customizable environment

Manage budgets efficiently and maximize revenues and costs in favour of collective benefit.

Do more with less! Through innovative techniques of Data Mining and Social Intelligence to maximize objectives, identifying trends related to workers behavior and satisfaction in order to answer their demands efficiently and improve engagement

15 oct. 2017

Comparativa de Costes Tableau vs PowerBI


Os dejamos un documento listo para descargar, con una comparativa muy completa de costes entre Tableau y PowerBI (hay que decir que el informe ha sido encargado por Tableau, por lo que puede tener cierto sesgo). 

Por ejemplo, en cuanto al esfuerzo de este tipo de proyectos, si tenemos en cuenta que ambas son herramientas de Data Discovery (usuario final), no se tiene suficientemente en cuenta la parte más importante, el modelado, ETL, Data Quality, etc... 

En la práctica, estas herramientas, necesitan también de herramientas ETL, metadatos, MDM, Data Quality que garanticen la correcta implementación en entornos en producción

Para una comparativa de funcionalidades técnicas echad un vistazo a la Comparativa de herramientas Business Intelligence

Ver también: Como preparar un entorno Big Data OLAP con Tableau y con PowerBI

Use Case “Dashboard with Kylin (OLAP Hadoop) & Power BI”

In recent posts, we explained how to fill the gap between Big Data and OLAP, using Tableau, Pentaho and Apache Zeppelin.

Now, we´ll show you how to use PowerBI for Big Data Dashboards using Apache Kylin. Also try online in our Big Data Demo site

In this use case we have used together Apache Kylin and Power BI to support interactive data analysis (OLAP) and developing a dashboard, from data source with Big Data features (Volume, Speed, Variety).

The data source contains the last 15 years of academic data from a big university. Over this data source, we have designed a multidimensional model with the aim of analyze student’s academic performance. We have stored in our Data Warehouse about 100 million rows, with metrics like credits, passed subjects, etc. The analysis of these facts is based on dimensions like gender, qualification, date, time or academic year.
However this data volume is too large to be analyzed using traditional database systems for OLAP interactive analysis. To address this issue, we decide to try Apache Kylin, a new technology that promises sub second interactive queries for data Volumes over billions and trillion of rows on the fact table.
Apache Kylin architecture is based on two Hadoop stack technologies: Apache Hive and HBase. First, we have to implement the Data Warehouse (DW) on Hive database using a star or a snow flake schemas. Once we have implemented one of these data models, we can define an OLAP cube on Kylin. 
To this end, we have also to define a Kylin’s cube model using Kylin’s GUI with wizard. At this moment, Kylin can generate the MOLAP cube in an automatic process. After cube creation, we can query the OLAP cube using SQL queries or connecting to a BI tool using the available J/ODBC connectors.
With aim to explore the data and generate visualizations that allows users to extract useful knowledge from data, we have chosen Microsoft Power BI tools: Power BI Desktop and Power BI Service (free of charge version).
Power BI Desktop is a completely free desktop self-service BI tool that enable users to create professional dashboards easily, dragging and dropping data concepts and charts to a new dashboard. Using this tool we have developed a dashboard, similar to our use cases with Tableau or Apache Zeppelin.
Once designed the dashboard, we have published it on the Web with Power BI cloud service (free edition). In other to do that, we have to create an extract of the data and upload it with the dashboard.  This process is transparent to users, who also can program data refreshing frequency using Pro or Premium versions of the Power BI service (commercial tools).

Apache Kylin:

Developed by eBay and later released as Apache Open Source Project, Kylin is an open source analytical middle ware that supports the support analysis OLAP of big volumes of information with Big Data charactertistics, (Volume, Speed, and Variety).
But nevertheless, until Kylin appeared in the market, OLAP technologies was limited to Relational Databases, or in some cases optimized for multidimensional storage, with serious limitations on Big Data.
Apache Kylin, builded on top of many technologies of Hadoop environment, offer an SQL interface that allows querying data set for multidimensional analysis, achieving response time of a few seconds, over 10 millios rows.
There are keys technologies for Kylin; Apache Hive and Apache HBase
The Data Warehouse is based on a Start Model stored on Apache Hive. 
Using this model and a definition of a meta-data model, Kylin builds a multidimensional MOLAP Cube in HBase. 
After the cube is builded the users can query it, using an SQL based language with its JDBC driver.
When Kylin receives an SQL query, decide if it can be resolved using the MOLAP cube in HBase (in milliseconds), or not, in this case Kylin build its own query and execute it in the Apache Hive Storage, this case is rarely used.
As Kylin has a JDBC driver, we can connect it, to most popular BI tools, like Tableau, or any framework that uses JDBC.


Power BI is a set of Business Intelligence (BI) tools created by Microsoft. Due to its simplicity and powerful, this emerging tools are becoming a leader BI technology like others such as Tableau, Pentaho or Microstrategy. 
Like these technologies, Power BI is a self-service BI tool, extremely simple but with a lot of powerful features as the following: dashboard developing (called reports in Power BI), web and intra organization sharing and collaborative work, including dozens of powerful charts (ej. line chart with forecasting on page 2 of our demo), connection to relational and Big Data sources, support for natural language Q & A, support to execute and visualize R statistic programs or data preprocessing (ETL).
The above features are implemented across the different tools of Power BI suite. Power BI desktop is a desktop tool for data discovery, transformation and visualization. It is a completely free tool with connectors to the most used relational and Big Data sources. Although for same data sources there are specific connectors, with Apache Kylin we have to use the ODBC connector available on Apache Kylin web page. In this way, we connect to Kylin and a data extract from data source is automatically generated by Power BI. 
At this moment we can create our demo visualization as follows: i) define data model, ii), apply some data transformations if needed (e.g. date format), iii) generate calculated metrics (e.g. student success rate), and then, iv), create the dashboard visualization, with one or multiple pages (e.g. our demo has two page interchangeable with bottom bar selector).
At this time, we have used Power BI service (cloud) to publish on the web our new dashboard join with data extract. To this end, we created an account of Power BI free. In this case, there are also Pro and Premium commercial editions with additional features like data extraction automatic refreshing and direct connections to some data sources such as SQL Server (also Analysis Services), Oracle or Cloudera Impala. 
However none of these direct connectors are for Apache Kylin, then with Kylin we have to use data extraction and data extract refreshing approaches.  
In addition to Power BI Desktop and Power BI Services (Free, Pro and Premium) there are other Power BI tools such as Power BI Mobile (access to dashboard from smartphone and collaborative work) or Power BI Embedded (to use visualizations in ad-hoc apps, web portals, etc).

If you are interested to implement your BI company project with Power BI do not hesitate to contact us on StrateBI.

Open Source Business Intelligence tips in October 2017

10 oct. 2017

Pentaho 8 Reporting for Java Developers

Gracias a Packt que nos ha enviado una copia de: 'Pentaho 8 Reporting for Java Developers' para revisión, como hemos hecho en otras ocasiones y que publicaremos proximamente

Este libro está escrito por un buen amigo con el que hemos coincidido en bastantes Pentaho Developers, Francesco Corti. Echad un vistazo a su web, gran experto en Alfresco y su integración con Pentaho.

Más de 400 páginas de utilidad en este libro, con código para ejercicios

Puedes ver también, el tutorial gratuito sobre Pentaho

5 oct. 2017

Cuales son las novedades es MySQL 8.0?

MySQL, the popular open-source database that’s a standard element in many web application stacks, has unveiled the first release candidate for version 8.0.
Features to be rolled out in MySQL 8.0 include:
  • First-class support for Unicode 9.0 out of the box.
  • Window functions and recursive SQL syntax, for queries that previously weren’t possible or would have been difficult to write.
  • Expanded support for native JSON data and document-store functionality.
With version 8.0, MySQL is jumping several versions in its numbering (from 5.5), due to 6.0 being nixed and 7.0 being reserved for the clustering version of MySQL.

MySQL 8.0’s expected release date

MySQL hasn’t committed to a release date for MySQL 8.0, by MySQL’s policy is “a new [general] release every 18-24 months.” The last general release was October 21, 2015, for MySQL 5.7, so MySQL 8.0’s production version is likely to come in October 2017

Where to download MySQL 8.0
You can download the beta versions of MySQL 8.0 now for Windows, MacOS, several versions of Linux, FreeBSD, and Solaris; the source code is also available. Scroll down the downloads page and go to the Development Releases tab to get them.

Visto en Infoworld

1 oct. 2017

Google lanza Cloud Dataprep in public beta

Muy interesante esta iniciativa de Google en Cloud, Cloud Dataprep, con la idea de facilitar los procesos ETL. Os dejamos la info más abajo, pero según nuestra opinión, dos temas importantes a considerar:

- Data preparation es un eufemismo para intentar dar a entender que los procesos ETL pueden ser sencillos y para usuarios finales, algo que para cualquiera que se dedique al Analytics sabe que no lo es (de hecho, es la parte más compleja e importante, es como la parte oculta de un iceberg). Y, esto es, por que se vislumbra mercado/ingresos en este área. Ver siguiente punto:

- Tiene un modelo de pricing

Google Cloud Dataprep is an intelligent data service for visually exploring, cleaning, and preparing structured and unstructured data for analysis. Cloud Dataprep is serverless and works at any scale. There is no infrastructure to deploy or manage. Easy data preparation with clicks and no code.

The stories behind the data

No dejéis de echar un vistazo a esta iniciativa de Bill Gates: The stories behind the data

"We are launching this report this year and will publish it every year until 2030 because we want to accelerate progress in the fight against poverty by helping to diagnose urgent problems, identify promising solutions, measure and interpret key results, and spread best practices.
As it happens, this report comes out at a time when there is more doubt than usual about the world’s commitment to development."

Microsoft lanza nuevas herramientas de Machine Learning

Microsoft, just like many of its competitors, has gone all in on machine learning. That emphasis is on full display at the company’s Ignite conference this where, where the company today announced a number of new tools for developers who want to build new A.I. models and users who simply want to make use of these pre-existing models — either from their own teams or from Microsoft.

For developers, the company launched three major new tools today: the Azure Machine Learning Experimentation service, the Azure Machine Learning Workbench and the Azure Machine Learning Model Management service.

In addition, Microsoft also launched a new set of tools for developers who want to use its Visual Studio Code IDE for building models with CNTK, TensorFlow, Theano, Keras and Caffe2. And for non-developers, Microsoft is also bringing Azure-based machine learning models to Excel users, who will now be able to call up the AI functions that their company’s data scientists have created right from their spreadsheets.

Visto en Techcrunch

Te puede interesar: Las 53 claves para conocer Machine Learning

Quieres trabajar en Big Data/Analytics y tienes ganas de aprender?

Tenemos un plan de formación y carrera para profesionales con una base inicial y muchas ganas de aprender. Escríbenos a (Octubre 2017)

Podrás participar en proyectos y en desarrollos con las tecnologías más modernas, como Dashboards en tiempo real

·        Requisitos:
o   Descripción: Una persona con interés en Big Data, no es necesaria mucha experiencia, pero con ganas de aprender y formar equipo. Por ejemplo, i), una persona que acabe de terminar una Ingeniería Informática y/o su trabajo de fin de carrera sea sobre Big Data, ii), una persona que esté haciendo I+D en Big Data  o iii), que haya hecho un máster en Big Data 
o   Salario: Según valía
o   Habilidades:
§  Imprescindibles:
·         Conocimientos teóricos básicos de Big Data.
o   Qué es el Big Data.
o   Debe tener claro el paradigma Map Reduce.
·  Conocimientos teóricos básicos de las siguientes tecnologías de arquitectura Hadoop.
o   HDFS
o   Spark
·         Conocimientos teóricos sobre Machine Learning.
·     Programación en i) Python y ii) Scala o Java para Machine Learning, con mínima experiencia demostrable 
·         Conocimiento de Bases de Datos
o   Soltura con lenguaje SQL.
o   Modelado relacional.
o   Experiencia mínima demostrable en al menos uno de los siguientes SGBD:
§  MySQL
§  PostgreSQL
§  Microsoft SQLServer
§  Oracle
§  Opcionales (alguno de estos conocimientos serían muy interesantes):
·         (+) Conocimientos teóricos básicos de arquitectura Hadoop.
o   Hive
o   HBase
o   Kafka
o   Flume
o   Distribuciones Cloudera o Hortonworks:
§  Características
§  Instalación.
·         Conocimientos teóricos Business Intelligence
o   Teoría de Data Warehouses.
§  Modelado en estrella.
·         Experiencia con alguna herramienta de ETL.
o   Ideal con Pentaho Data Integration o Talend
o   Cualquier otra.
·         Experiencia en diseño y carga de un Data Warehouse.

29 sept. 2017

Oferta de empleo Business Analytics (Business Intelligence, Big Data)

Nuestros compañeros de Stratebi tienen posiciones abiertas para trabajar en el campo del Business Intelligence, Big Data y Social Intelligence en Madrid y Barcelona. Si estás interesado, no dejes de echarle un vistazo y enviarnos tu CV:

Posiciones Abiertas: Septiembre 2017

Debido a la ampliación de operaciones en Madrid y Barcelona, estamos buscando verdaderos apasionados por el Business Analytics y que hayan tenido interés en soluciones Open Source y en el desarrollo de tecnologías abiertas. Y, sobre todo, con ganas de aprender en nuevas tecnologías como Big Data, Social Intelligence, IoT, etc... 
En Barcelona, podrías tener la posibilidad de teletrabajo 

Si vienes del mundo frontend, desarrollo de visualizaciones en entornos web, también serás un buen candidato 

Si estas leyendo estas lineas, seguro que te gusta el Business Intelligence. Estamos buscando a personas con gran interés en este área, que tengan una buena formación técnica y alguna experiencia en la implementación de proyectos Business Intelligence en importantes empresas con (Oracle, MySQL, Powercenter, Business Objects, Pentaho, Microstrategy...) o desarrollos web adhoc, aunque no es imprescindible.

También se valorarán candidaturas sin experiencia profesional en este campo, pero con interés en desarrollar una carrera profesional en este área.

Mucho mejor, si además fuera con BI Open Source, como Pentaho, Talend... y conocimientos de tecnología Big Data y Social Media, orientado a la visualización y front-end

Nuestras camisetas te están esperando!!

Todo ello, será muy útil para la implementación de soluciones BI/DW con la plataforma BI Open Source que está revolucionando el BI: Pentaho, con la que mas trabajamos, junto con el desarrollo de soluciones Big Data, Social Intelligence y Smart Cities, así como la nueva plataforma que hemos creado: LinceBI, adaptada a los diferentes sectores

Si ya conoces, o has trabajado con Pentaho u otras soluciones BI Open Source será también un punto a favor. De todos modos, nuestro Plan de Formación te permitirá conocer y mantenerte actualizado en estas soluciones.


¿Quieres saber un poco mas sobre nosotros y las características de las personas y perfiles que estamos buscando para 'subirse al barco'?

¿Qué ofrecemos?

- Trabajar en algunas de las áreas de mayor futuro y crecimiento dentro del mundo de la informática: Business Intelligence, Big Data y el Open Source.
- Colaborar en la mejora de las soluciones Bi Open Source, entre las que se encuentran desarrollando algunas de las empresas tecnológicas más importantes.
- Entorno de trabajo dinámico, aprendizaje continuo, variedad de retos.
- Trabajo por objetivos.
- Considerar el I+D y la innovación como parte principal de nuestros desarrollos.
- Retribución competitiva.
- Ser parte de un equipo que valora a las personas y al talento como lo más importante.

Ya sabes, si te gusta la idea, escribenos, contando tu interés y un CV a:

O si conoces a alguien, que crees que le podría encajar, no dudes en reenviarselo.

Detalle de algunas tecnologías que manejamos:

Conocimientos de Bases de datos:
- Administracion
- Desarrollo
- Oracle, MySql, PostgreSQL, Vertica, Big Data

- Conocimientos de BI y Datawarehousing con Pentaho u otros BI comerciales (BO, Powercenter, Microstrategy...)
- Modelado de DataWarehouse
- Cuadros de mando
- Reporting, OLAP...

- Conocimientos de linux
- Bash scripting
- Configuracion de servidores y servicios
- Conocimientos de Java y J2EE
- Tomcat
- Spring
- Hibernate
- Git

- Conocimientos Big Data y Machine Learning

18 sept. 2017

Cual es el nivel de Big Data en tu compañía?

En esta infografía podéis ubicar a vuestra compañía y conocer el nivel de madurez en que se encuentra. Muy últil. 
Para estar actualizado en Big Data, echa un vistazo a la mejor recopilación de posts sobre Big Data que hemos publicado


15 sept. 2017

En Tecnologia y Consultoria #StopBodyShopping

Defendamos el trabajo bien hecho y de calidad. Aprender lleva mucho tiempo. No se puede saber de todo

"La sabiduría es hija de la experiencia"

Leonardo Da Vinci(1452-1519) Pintor, escultor e inventor

Big Data Analytics for Financial Services

Un gran evento el de Big Data Analytics for Financial Services

"Due to the sheer volume of data the financial services sector generates from customers, transactions, global trading, and many other sources, it is currently one of the most risk laden sectors.

This has put the FS sector under increased scruitiny from regulatory bodies to remain compliant, resulting in the on-going pressure for effective information governance.

But this has also created an opportunity to improve competiveness and drive business growth. The sector has continued to use data to detect and manage the increase in fraud and financial crime, develop competitive pricing, manage risk & compliance as well as make strategic business decisions. But now, the shift has also moved towards innovation, and data is being leveraged to develop new and personalised products and services via better customer segmentation and analysis"

Descargar Documento


IoT Analytics and Industry 4.0

Cada vez más el uso de Analytics para IoT, alrededor del concepto de Industry 4.0 está suponiendo una revolución en la digitación del sector productivo e industria. El despegue del Big Data, de uso de Analytics y de tecnologías abiertas lo están haciendo posible

El gráfico superior explica muy bien estas posibilidades

En TodoBI hemos hablado bastante de IoT y su explotación con Analytics,
Incluimos algunas de las mejores soluciones open source para su uso 

1 sept. 2017

Libro gratuito: Ultimate Guide To Data Science Interviews

What’s inside? 
90 pages of original research, interviews with real data scientists and hiring managers at some of the best data science teams on earth, as well as recruiters and successful candidates who are now data scientists, and actionable checklists. We’ll walk you, step-by-step through everything you need to know to ace the data science interview. 
  • You’ll start by understanding the different roles and industries within data science so you can apply for jobs that are the best fit for you.
  • Next, you’ll learn how to apply for these jobs to maximize your chances of getting an interview.
  • Then, you’ll go over every step of the data science interview process so that you can prepare for what’s coming.
  • Next, you’ll get free sample questions that cover the categories of questions you can expect to receive, which you can use to practice how you approach the data science interview.
  • Then, you’ll get advice on what to do after the interview to move the process forward.
  • Finally, you’ll know what to do if you’re juggling between different offers.

Table of Contents:
What is Data Science?
Different Roles within Data Science
How Different Companies Think About Data Science:
  1. Early­stage startups (200 employees or fewer) looking to build a data product
  2. Early­stage startups (200 employees or fewer) looking to take advantage of their data
  3. Mid­size and large Fortune 500 companies who are looking to take advantage of their data
  4. Large technology companies with well­ established data teams
Industries that employ Data Scientists
Getting a Data Science Interview
Nine Paths to a Data Science Interview
Traditional Paths to Job Interviews:
  1. Data Science Job Boards and Standard Job Applications
  2. Work with a Recruiter
  3. Go to Job Fairs
Proactive Paths to Job Interviews:
  1. Attend or Organize a Data Science Event
  2. Freelance and Build a Portfolio
  3. Get Involved in Open Data and Open Source
  4. Participate in Data Science Competitions
  5. Ask for Coffees, do Informational Interviews
  6. Attend Data Hackathons
Working with Recruiters
  1. How to Apply
  2. CV vs LinkedIn
  3. Cover Letter vs Email
  4. How to get References and Your Network to Work for You
  5. Preparing for the Interview
What to Expect:
  1. The Phone Screen
  2. Take­home Assignment
  3. Phone Call with a Hiring Manager
  4. On­site Interview with a Hiring Manager
  5. Technical Challenge
  6. Interview with an Executive
What a data scientist is being evaluated on
  1. The Categories of Data Science Questions
  2. Behavioral Questions
  3. Mathematics Questions
  4. Statistics Questions
  5. Scenario Questions
  6. Tackling the Interview
  7. Conclusion
What Hiring Managers are Looking For:
  1. Interview with Will Kurt (Quick Sprout)
  2. Interview with Matt Fornito (OpsVision Solutions)
  3. Interview with Andrew Maguire (PMC/Google/Accenture)
  4. Interview with Hristo Gyoshev (MasterClass)
  5. Conclusion
How Successful Interviewees Made It:
  1. Sara Weinstein
  2. Niraj Sheth
  3. Sdrjan Santic
  4. Conclusion
7 Things to Do After The Interview:
  1. Send a follow­up thank you note
  2. Send them thoughts on something they brought up in the interview
  3. Send relevant work/homework to the employer
  4. Keep in touch, the right way
  5. Leverage connections
  6. Accept any rejection with professionalism
  7. Keep up hope
The Offer Process
  1. Handling Offers
  2. Company Culture
  3. Team
  4. Location
  5. Negotiating Your Salary
  6. Facts and Figures
  7. Taking the Offer to the Best First Day
  1. Reaching out to get a referral
  2. Following up after an interview